Followers

Monday, December 26, 2011

Physics Lesson 8 - Momentum

CONSERVATION OF MOMENTUM

 1. Momentum is the product of mass and velocity. It is a vector quantity and its direction is towards  
       the direction of the velocity.
 2. Impulse is the product of force and time during which the force acts. The impulse is equal to the      
      change in momentum.
 3. Elastic bodies are bodies which return to their original shapes after a temporary deformation during  
      collision.
 4. Law of Conservation of momentum. If tow or more bodies interact, the momentum after the         
      interactions is equal to the momentum before interaction.  The total momentum of any system of     
      bodies is unchanged by any interactions between the different members of the system.
 5. Resilience is the ability of a body to undergo compression or rapid deformation without the      
      development of permanent deformation.
 6. Restitution is the vigor (energy) with which a body restores to its original shape and size after  
      deformation.
 7. Coefficient of restitution ( r ) the ratio of the velocity with which the two bodies separate after   
      collision to the velocity of approach before collision.
                        r = 1  for perfectly elastic collision
                        r = 0  for perfectly inelastic collision
                        r = between  0  –  1  for semi-elastic collision.   

COLLISION PHENOMENA
  1.  In a perfectly elastic collision, kinetic energy as well as momentum is conserved. The velocity of approach is equal to the velocity of separation in magnitude but opposite in direction. ( NOTE : No perfectly elastic collision for macroscopic bodies ).    Ex.  Collision between atomic nuclei, atoms, molecules and electrons
  2. Inelastic collision is any collision for which the final kinetic energy is less than the initial kinetic energy.
  3.  Perfectly inelastic collision is any collision wherein the two colliding bodies sticks together indefinitely. The colliding bodies are permanently deformed and never separate, hence both have the same final velocity and the velocity of separation is zero since the two bodies sticks together.
  4.  Semi-elastic collision is a type of collision that is not perfectly elastic.

 NOTE :
            In every collision momentum is conserved, kinetic energy is conserved only in perfectly elastic collision. 

MOMENTUM EQUATIONS

1.      p = mv   ,  p => momentum in N-s ,  m => mass in kg ,  
                           v => velocity  in m/s
           
            2.  I =  Ft  ,  F => force in newton  ,  t  =>  time in second

             
Head-on Collision
 
                       During collision
                                         F1  =  F2  

                                     m1a1 =  m2a2           
            
                     where     a1  =   u1 – v1   .      and     a2 =  v2 – u2   . 
                                                   t                                       t  


                        m1 ( u1 – v1 )    =    m2 ( v2 – u2 )
                                     t                              t 

                       
                        m1u1   –   m1v1   =   m2v2   –   m2u2    

                   which simplifies to 

        
            3.        m1u1   +   m2u2   =   m2u2    +   m2v2      

                       ( this is now the statement of the law of momentum) 
                       momentum before   collision =  momentum after collision

                                                                                 
            4  .  v =      m1u1  + m2u2 – m1v1         
                                           m2  
            5.  Kinetic energy  before collision     Ekb = ½ ( m1u12  +  m2u22 )     

            6. Kinetic energy after collision          Eka  =  ½ (m1v12  +  m2v22 )     

            7. Energy loss during collision            EL  =  Ekb  –  Eka  

            8.  Net velocity of approach               ∑ u  =  u1  –  u2
         
            9.  Relative velocity of separation      ∑ v  =  – ( v1  –  v2 )  or   v2  –  v1     

          10.  Coefficient of restitution            
                           r  =  –       v1  –  v2           ==>  r ( u1 – u2 ) =  v2  – v1
                                            u1  –  u2
 
          11.  v2  =   r ( u1 – u2 )  +  v1  


            Substitute equation 11 in equation 3
            m1u1   +   m2u2   =   m2u2    +   m2 [r ( u1 – u2 )  +  v1 ]
            m1u1   +   m2u2   =   m2u2    +   m2 r u1 – m2 r u2  + m2 v1
            m1u1   +   m2u2  –  m2 r u1 + m2 r u2   =  v1 ( m1 + m2 )
                        add   m2 u1  –  m2 u1   on  the left side of the equation
            m1u1   +   m2u2  +  m2 u1  –  m2 u1   –  m2 r u1 + m2 r u2   =  v1 ( m1 + m2 )
            u1 ( m1 + m2 ) – m2 ( u1 – u2  +  r u1  –  r u2 )  =  v1 ( m1 + m2 )
            u1 ( m1 + m2 ) – m2 (  u1  –  u2 ) ( 1 + r )  =  v1 ( m1 + m2 )
                       
            12.   v1  =        u1 ( m1 + m2 )   –   m2 (  u1  –  u2 )( 1 + r )               
                                                         m1 + m2 

           and  similarly 


            13.   v2  =     u2 ( m1 + m2 )  –   m1 ( u1 – u2 )( 1 + r )                   
                                                     m1 + m2



 

No comments:

Post a Comment